

How we use PENTrack, a Monte-Carlo UCN Simulation Tool

Cole Teander Almaty, Kazakhstan, April 2024

To this:

People from left to right:

Wolfgang Schreyer (ORNL), Cole Teander (NCSU), Clark Hickman (NCSU)

UCN Transport is Difficult!

Monte-Carlo Simulation Tools for UCN

Name:	Learn More Here:	Get Access Here:
PENTrack	[1610.06358] (arxiv.org) (W. Schreyer et al., 2017)	GitHub - wschreyer/PENTrack:
MCUCN	[1709.05974] (arxiv.org) (G. Zsigmond, 2018)	MCUCN Code UCN Physics Paul Scherrer Institut (PSI) (Email Dr. Geza Zsigmond for access)
Kassiopeia	[1811.05972](arxiv.org) (Z. Bogorad et al., 2022)	GitHub - KATRIN-Experiment/Kassiopeia:
STARucn	Their site (link on the right) or from review paper: [1806.10778] (arxiv.org)	STARucn / Wiki / Home (sourceforge.net)
Geant4UCN	The simulation of ultracold neutron experiments using GEANT4 - ScienceDirect (not on arxiv, I think) (F. Atchison et al., 2005)	Start here Geant4 (cern.ch) Then find UCN specific extensions

What is PENTrack?

 PENTrack, developed by Wolfgang Schreyer, is a Monte-Carlo trajectory tracking simulation tool optimized for UCNs.

(boxed sections on upcoming slides copied with permission from Wolfgang Schreyer)

- · Relativistic trajectory tracking of
 - UCN
 - Electrons
 - Protons
 - comagnetometer atoms (Hg, Xe)
- External forces:
 - Gravity
 - Lorentz force
 - Magnetic gradient force on magnetic moment µ with polarization p = ±1
- 5th-order controlled-step dense-output Runge Kutta method (boost.odeint)

$$\ddot{\mathbf{x}} = \frac{1}{\gamma m} \left(\mathbf{F} - \frac{1}{c^2} \left(\dot{\mathbf{x}} \cdot \mathbf{F} \right) \dot{\mathbf{x}} \right)$$

$$\mathbf{F} = m\mathbf{g} + q\left(\mathbf{E} + \dot{\mathbf{x}} \times \mathbf{B}\right) + p\mu \nabla |\mathbf{B}|$$

Link from image: (boost.odeint)

Key Abilities of PENTrack

Specific design goals of PENTrack

- Import any arbitrary geometry designed in CAD software as an STL file
- Simulate UCNs in all conditions/strengths of magnetic fields
 - Import (or define) arbitrary 2D & 3D magnetic & electric field maps (from, ie: OPERA,
 ANSYS)

All while being (mostly) easy to use without (too much) coding

Spin-Tracking for UCN with PENTrack

Semi-classical, decoupled spin tracking

- 1. Calculate trajectory step
- Integrate <u>Bargmann</u>-Michel-<u>Telegdi</u> equation with fields along trajectory step
- 3. Decide if spin tracking should continue during next step or if superposition should collapse to one polarization state
 - Magnetic field above user-defined threshold?
 - Spin flip on surface reflection?

BMT equation:

$$\dot{\mathbf{S}} = \left(-\frac{2\mu}{\gamma\hbar}\mathbf{B}' + \omega_T\right) \times \mathbf{S}$$

$$\mathbf{B}' = \gamma\mathbf{B} + (1 - \gamma)\left(\mathbf{B} \cdot \dot{\mathbf{x}}\right) \frac{\dot{\mathbf{x}}}{\dot{\mathbf{x}}^2} - \frac{\gamma}{c^2}\dot{\mathbf{x}} \times \mathbf{E}$$

$$\omega_T = \frac{\gamma^2}{c^2\left(\gamma + 1\right)}\ddot{\mathbf{x}} \times \dot{\mathbf{x}}$$
"v x E effect"

slide taken with permission from W. Schreyer

Diffuse Scattering Models & Transport

- UCN transport is strongly dependent on surface properties of the guides
- PENTrack currently handles:
 - Lambert
 - "Modified Lambert"
 - Microroughness
- A new model, mf-BRDF
 (Imajo et al. 2022) or
 "macro-roughness", is in
 the process of being
 added to PENTrack
 - supposed to most accurately represent coated metal guides

Monte-Carlo Trajectory density map and TOF spectrum for 10⁶ mono-energetic UCN, down a 1 meter guide. (This was not simulated in PENTrack)

Some Examples of PENTrack Usage

- PENeLOPE
 - Operational optimization time varying strong magnetic fields (W. Schreyer et al., 2017) [1610.06358] (arxiv.org)
- Extensive use at TRIUMF
 - Optimizing TUCAN EDM performance (S. Sidhu et al., 2023) [2212.04958]
 - First testing new UCN source at TRIUMF (S. Ahmed et al., 2019)
 [1809.04071](arxiv.org)
- LANL nEDM -
 - Studying transport of Polarized UCN (<u>Douglas Wong Ph.D. Thesis, 2023</u>)
- And everything else you'll see in this slideshow!

Our Experiment and Simulations

The Experiment Formerly Known as nEDM@SNS

A unique nEDM
 experiment designed
 to produce and then
 measure UCN
 in-situ via
 interactions with
 Helium.

My focus: characterizing the measurement cells

The Measurement Cell

A prototype measurement cell for the nEDM@SNS experiment which underwent UCN storage tests at Los Alamos during this work. The internal cell walls are coated with a dPS and dTPB mixture.

For optimal experimental operation and statistics, this cell must:

- Transmit 8.9 Å cold neutrons to produce UCN in superfluid Helium
- Lengthen 80 nm LHe scintillation light to pass through to external photo-detectors
- Retain ³He polarization
- No magnetic components, and stable in E-field,
 -&-
- Have a cell specific UCN storage lifetime of 1000-2000s (ideally for a wide spectrum of energies)

Initial Storage Tests

At LANL, we fill, hold, then count remaining UCN in our cells. The most recent one had:

• A total τ_{storage} (β-decay included) = 570±22 s @ 36K

o or, $\tau_{\text{cell}} \approx 1600 \text{s}$ @ 36K

However: we had no knowledge of the E-dependence of this storage time!

New "Low-Pass" Filter

- Installed in February 2024, to be tested next beam cycle
- Can actuate absorber from a height of 50 to 170 cm without breaking vacuum

(PE_{UCN} goes 1 neV ≈ 1 cm height)

Magnetically-coupled motion feedthrough.

How We Used PENTrack

- 1.) Built model of system in CAD
- Assigned material properties, initial UCN source geometry/spectrum, desired output information
- 3.) Benchmarked simulations against experimental results
 - a.) Updated model (added "gaps", adjusted loss coefficients & specularity constants)
- 4.) Created results

Cell:

dPS (171 neV, 0.0047 neV, 2.7e-5)

Lambert Model (84% specular)

PENTrack Results

 In a direct comparison simulation, we showed our new design was ~twice as effective at cleaning the UCN spectrum than LANL's current roundhouse's absorber

Energy Spectrum For Different Roundhouse Conditions at End of Fill

Conclusions & Acknowledgements

nEDM esns

- UCN simulations are necessary for understanding transport
- Today's Monte-Carlo simulation tools (such as PENTrack) are remarkably versatile, and easy(ish) to use!

People:

NCSU: Clark Hickman, Ekaterina Korobkina, Bob Golub, Paul Huffman, Albert Young, Matt Morano, Adam Dipert, Christian White

LANL: Martin Cooper, Tito Takeyasu, Mark Makela, Chris O'Shaughnessy, Wade Ulrich, Chris Morris, Steven Clayton, Scott Currie, TJ Schaub

Bartoszek Engineering: Larry Bartoszek Montclair State University: Kent Leung, Bill Klos

ORNL: Wolfgang Schreyer, Andy Saunders

Backup Slides

2021 Results

Data from 2021. We now assume the significant decrease in lifetime from the 12/16 data to be from accidentally venting dirt into the system.

Simulation Results

- Adding our new roundhouse decreases the number of neutrons we can obtain in our measurement cell
 - Green arrow represents a direct comparison - showing ~25% loss
- But, by replacing the lossy switcher with a tee, we expect to recuperate some loss
 - The red arrow represents this showing a ~9% decrease

The decrease is well within our acceptable tolerances for the functionality gain of the new RH

Geometry

- 1 Current RH
- 3 Current RH to New RH

Improvements 4/5

Benchmarking my simulations

Setting Loss Parameters in Guide Experiment

- Reproducing the experimental absolute count rates in simulation is very difficult
- However, I simulated our comparative TES experiment to try to set guide loss parameters by matching the *relative* count rates
- The main parameter I varied was the gap length at the switcher
- Note This experiment gives us no further insight into the loss rate of the cold section of guide. Further work is being carried out on that.

*for aperture results, see slideshow notes or Feb 2023 collaboration meeting slides

Simulation Geometry

quide

auide

Loss Parameters Continued

- We plotted the ratio of the count rate on each TES detector as simulated after the switcher compared to on the roundhouse. The thick blue line is the experimental results.
 - Top graph is the case with the 1cm Ni foil aperture out, bottom graph is with the 1cm Ni foil aperture in
- The non-aperture simulations suggest that our simulated guide needs more than 10 mm of gaps in it to reproduce the relative count rates down guide.
- The aperture simulations suggest that the relative count rates are roughly similar to the experiment with anywhere between 4-10 mm gaps to reproduce experimental results

Our Conclusion: Rather than have a single 1cm gap in the switcher, we opted to have 0.5mm gaps at each coupler and a 5mm gap in the switcher. (totaling 7mm of gaps)

Benchmarking Roughness Model

Filling directly into a horizontal TES from a 1" diameter beam guide

NC STATE UNIVERSIT'

Benchmarking Roughness Model

More Neutrons in middle detector

UCN Storage – Cell Requirements

- Highly non-magnetic
- Stable in high- electric fields and across pressure gradients
- Non-electrically conductive (pPMMA)
 walls held together by deuterated
 "cement"
- Do not spin depolarize UCNs and co-magnetometers (dPS coating)
- Coating that wavelength shifts light (dTPB coating)

Credit: Kent Leung