ASTROPHYSICAL S-FACTOR AND REACTION RATE FOR ¹¹B(p, γ)¹²C REACTION

S.V. Artemov^{1,2}, N. Burtebayev^{1,3}, S.B. Sakuta^{1,4}, **S.B. Igamov²**, Maulen Nassurlla^{1,3}, Marzhan Nassurlla¹,K. Rusek⁵, F.Kh. Ergashev², O.R.Tojiboev², I.Ya. Son², D.A. Issayev^{1,3}

Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
Institute of Nuclear Physics, 100214 Tashkent, Uzbekistan
Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
National Research Center "Kurchatov Institute", 123182 Moscow, Russia
Heavy Ion Laboratory University of Warsaw, PL-20-093 Warsaw, Poland
E-mail: igamov@inp.uz

It is generally accepted that the ¹²C nucleus is formed mainly by fusion of three α particles, $3\alpha \rightarrow^{12}$ C* through the Hoyle state (0⁺) with an excitation energy of 7.65 MeV, as the proton capture by the ¹¹B nucleus at $E_p < 100$ keV has a small cross section for ¹²C formation in primary nucleosynthesis. However, the alternative pathways of its formation considered, for example, in the inhomogeneous Big Bang model [1] leading to radiative capture of a proton by the ¹¹B nucleus, cannot be ignored. As noted in [1,2], in the processes of nucleosynthesis in proton-rich environment, the following chains of nuclear reactions may also be important:

...⁷Be(p, γ)⁸B(α ,p)¹¹C(e+ ν)¹¹B(p, γ)¹²C...

The direct measurements of the total S-factors of radiative capture on ¹²C, even at not too low energies, is a nontrivial experimental task, since it is necessary to measure the γ spectra of low-intensity high-energy γ -quanta ($E\gamma$ >10 MeV) and also high-energy cascade quanta [1]. Note that in the astrophysically significant energy region below 100 keV in the ¹¹B+p system there are no resonances, and therefore, for extrapolating calculations of the total S-factors and reaction rates, it becomes very important to know the ANCs for bound states of the proton in the ¹²C nucleus, which can make a significant contribution to the total direct proton capture cross section.

The aim of this work is to calculate the astrophysical S-factor and the reaction rate ${}^{11}B(p,\gamma){}^{12}C$ using the ANC square values for the ground (0⁺) and excited (2⁺) states of the ${}^{12}C$ nucleus (where the experimental data are available), obtained from the analysis of the peripheral ${}^{11}B({}^{10}B,{}^{9}Be){}^{12}C$ proton transfer reaction.

The calculation of the astrophysical *S* factor of the ${}^{11}B(p,\gamma){}^{12}C$ radiative capture reaction was carried out within the framework of the modified *R*-matrix method for transitions to the ground (0⁺) and 1-st exited ($E^* = 4.44$ MeV, 2⁺) states of the ${}^{12}C$ nucleus. This work also presents the results of the calculation of the reaction rate ${}^{11}B(p,\gamma){}^{12}C$ based on the energy dependence of the S-factor at the astrophysical relevant temperatures.

Astrophysical *S* –factors of γ_0 –, γ_1 – transitions and total ($\gamma_0 + \gamma_1$) astrophysical *S* –factor in the ¹¹B(*p*, γ)¹²C reaction.

References

- 1. J.J. He et al., Phys. Rev. C 93, 055804 (2016)
- 2. V. Guimaraes and C. A. Bertulani AIP Conf. Proc. 1245, 30 (2010)

 ${}^{11}B(p,\gamma){}^{12}C$ reaction rate.