

The Highly Granular Neutron Detector prototype at the BM@N experiment

A. Zubankov INR RAS, NRNU MEPhI

12.10.2024

BM@N: изучение свойств плотной барионной материи

- Study of the QCD diagram at high baryon densities
- Study of the formation of multi-strange hyperons
- Search for hypernuclei in nucleus-nucleus collisions
- Study of the azimuthal asymmetry of charged particle yields in collisions of heavy nuclei.

- The Highly Granular Neutron Detector (HGND) at the BM@N experiment is under development for measuring the energy of neutrons up to 4 GeV produced in nucleusnucleus collisions.
- For the first time, small prototype of the HGND was used in Xe+CsI at 3.8A GeV run at the BM@N.
- The multilayer (absorber/scintillator) and high granular structure of the ToF HGND makes it possible to identify and measure the energies of neutrons.

- Design of Highly Granular Neutron Detector prototype
- HGND prototype in Xe+Csl@3.8A GeV run
- HGND prototype efficiencies
- Estimation of neutron yields

HGND prototype design

HGND prototype in the Xe+CsI@3.8A GeV run of BM@N

Central

tracker

Kruglova I.

beam"

Interactions of nuclei

EMD:

without overlap of nuclear densities $b > R_1 + R_2$

> In most cases, EMD of a heavy nucleus results in the emission of a single or just few neutrons with the production of a single residual nucleus

Hadronic interactions:

with overlap of nuclear densities

 $b < R_1 + R_2$

b

Criteria for selecting events with neutrons

Ultra-peripheral collisions -EMD:

- Single Xe ion in target + **Beam trigger (BT)**
- Forward Quartz Hodoscope (FQH) Z²>2500

Central & semi-central collisions – hadronic interactions:

- Single Xe ion in target + Central trigger (CCT2)
- Forward Detector amplitude < 4500
- Selection of events without charged particles, ToF cut, y-cut (1.55 X₀ or 0.11 λ_{int})

Reconstruction of energy by maximum velocity

Scaled by incident ion beam rate

A. Zubankov

Event selection

Fastest cells for EMD vs hadronic interactions

Comparison of hadronic interactions (CCT2) with electromagnetic dissociation (BT) Run 8281 (BT) vs 8300 (CCT2) 3.8 AGeV

No target vs CsI 2%

0.7 deg., 3.8 AGeV

Scaled by incident ion beam rate

HGND prototype efficiency for neutrons

Geant4 simulation: Box generator Only neutrons

VETO-cut

EMD vs Nuclear interaction in simulation

Neutron multiplicity – **1.05**

Neutron hit multiplicity on the surface – 1.02

^{*}I. Pshenichnov, Electromagnetic Excitation and Fragmentation of Ultrarelativistic Nuclei. *Phys. Part. Nucl.* **2011**, 42 (2), 215-250.

Neutron multiplicity – 14.21

Neutron hit multiplicity on the surface – **1.54**

^{**}M. Banzat et al., Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM, *Phys. Part. Nucl. Lett.* **2020**, 17, 303.

12.10.2024

HGND prototype efficiencies

Model	acc, %	ε, %	acc x ε, %
DCM-QGSM-SMM	3.87 ± 0.02	35.31 ± 0.15	1.37 ± 0.01
RELDIS	34.31 ± 0.25	61.31 ± 0.45	21.04 ± 0.15

The difference in *acc* is explained by the considerably smaller angular distribution of neutron emission in EMD than in hadronic interactions. The difference in ε is due to the ~1.5 times different average multiplicity of neutrons hitting the detector, since in the current detector configuration it is impossible to reconstruct more than 1 neutron in an event.

Time resolution

0.22^{×10⁻³}

0.2

0.18E

0.16E

0.14

0.12

0.1

0.08È

0.06E

0.04E

0.02E

0^E

2

3

$$\Upsilon = acc \cdot \varepsilon \cdot \langle N \rangle \cdot \sigma_{inc} \frac{d \cdot N_A \cdot \rho}{A} \cdot k$$

Counts/ions

12.10.2024

A. Zubankov

Estimation of neutron yields

Experiment

 $\frac{\Upsilon_{hadr}}{\Upsilon_{EMD}} = 1.73 \pm 0.01(stat) \pm 0.17(sys)$

$$\frac{Y_{hadr}}{Y_{EMD}} = 1.70 \pm 0.16(stat) \pm 0.25(sys)$$

- The acceptances and efficiencies of the HGND prototype to neutrons from the hadronic interaction and EMD were studied.
- The ratio of neutron yields from a hadronic interactions to EMD is 1.70±0.16±0.25, which is close to the simulation 1.73±0.01±0.17.
- EMD in the BM@N experiment can be used as a source of high energy neutrons with multiplicity ≈1 per event.
- Spectator neutrons from hadronic interactions and neutrons from EMD can be used to calibrate HGND and study its efficiency.

Thank you for your attention!