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Why Spectroscopy?

Measuring the spectra of quantum systems can be a useful tool for measuring small

effects. Some of the most well-known examples come from the hydrogen atom:

« Quantum Vacuum fluctuations (Lamb Shift)

« Line splitting in electric/magnetic fields
(Stark/Zeeman effect)

« Relativistic Effects

« Spin Orbit Coupling

Come from AE of bound states of electrons in atomic
potential energy.

It is an attractive idea to make similar spectroscopic
measurements in a different context to search for other
kinds of small effects, like new short-range forces.

This can be done with gravitational bound states of UCNSs.
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Applications

Gravitational Resonance Spectroscopy (GRS) allows for the precise
testing of various principles and theories. An incomplete list is
« Weak Equivalence Principle
 String Theory: Large Extra-Compactified Spatial Dimensions
« Dark Energy Searches: Chameleons
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« Dark Matter Searches: Scalar and Pseudo-Scalar Bosons (Axions)
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Spectroscopy of H tells you about small electromagnetic effects while GRS can tell you about
small modifications to gravity (assuming you have the proper test particle).
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Gravitational Bound States
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Energy levels are NOT equally spaced - transitions can
be induced between pairs of states without touching 6-
other states.
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Observation Principle

I Absorber

Use UCNs Neutron

- Minimal coupling to static electric fields

- Long observation times—sufficient energy Collimator Bottom mirrors
resolution: AE~h/At

« Reflects off sufficiently flat surfaces with

minimal losses.

detector

~10 cm

0.1

Rough absorber/scatter removes high energy
modes.

Transmission through system grows in steps oo
as function of absorber height, following the
mean position of quantized energy levels.

N (counts s™)
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Gravitational Resonance
Spectroscopy (GRS)

The general scheme of GRS is to prepare an initial state
- let it evolve and transition (either with a Rabi or Ramsey like set-up)
— measure transmission through the system of the final state

Rabi:
State Prepared Transition Inducing Po@entfijal State Analyzed
. w
2 Vw (t) ~ € f
Ramsey: Pig
State Prepared Free Evolution State Analyzed
) Vi (t) Vo (1) f

With UCNSs, resolution of energy type observables can be high due to long observation times—
stringent constraints on tests of fundamental principles and new physics phenomena.

m h
v~1? & L~0.1m — At~0.1s AE~E~7 x 10 3peV
y
UNIVERSITY V/ /4
THE EUROPEAN NEUTRON SOURCE MNEUTRONS

FOR SOCIETY

7VIRGINIA



Qbounce: Mechanically Induced
Resonances

Installed at PF2 UCN source at Rabi:
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Resonant transitions

Transport mirror

[7]

with edges
Absorber

Scatterer

GRANIT Spectrometer was fed with UCNs by
the superthermal source SUN1.

0.05 < sht < 0.2 mm

4 modules ready o be connected

bc‘amlu

Adjustment micrometric serews

« Neutrons entered through a slit with a rough absorbing
mirror above to remove higher energy states.

a 128 wires array

g e s
monochromator

« There is then a step down into a region with no absorber,
but instead, a wire array which generates an oscillating
magnetic field. The step suppresses the ground state, and
the field induces transitions.
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« Another absorber is present at the end of the set-up,
selecting the ground state for a transmission measurement.
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GRANIT: Magnetically Induced
Resonances

Take advantage of neutron’s magnetic moment couplmg to external magnetic fields
H=H,—ji B
Transitions come from, to leading order,
Vi(z,t) = tulB(z,t)| = tu(a(t) + Oz + )
~ tpu(Bo + f1cos(wt + @) + -+ )z
Leads to “Stern-Gerlach” shift in energy levels since m, gz - m, (g + ‘:n—ﬂ‘)) z

9+ =g T uPo = €ny # €n-
which results in two, spin-dependent, resonance locations for transitions fromi - f, w;r4.
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GRANIT: Magnetically Induced
Resonances (DC Mode)

V(z,t) = zulB(@t)| = tu(a(t) + B(t)z+---) Spatially oscillating field
~ u(fy + Picoswt + )z resonance condition being met depends on UCN velocity v,
— measure fall height to measure spectrum
where w = 2nv, /1
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E 0.0 Py [T/m] periodic magnetic _ horizontal velocity
& B, [T/m] field gradient 3. Filter ground  in position-
_;:, 0sl \X/ W 1. Prepare initial state, l state sensitive detector
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GRANIT: Magnetically Induced
ReSOnanceS AC MOde) L = I4 =14A I2 = I3 = 3.8 A, in experiment

Produces a spatlally uniform field
gradient over the mirror and
oscillates temporally at a chosen
frequency.

V(z,t) = (By + fycos(dnft +2¢) + )z
f is a tunable frequency

Velocity not measured with a PSD.
Counts measured for all velocities

Last configuration used during
experiments.
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(1) Step u (2) Magnetic excitation

0.8 mm

(3) Filter

Bottom mirror
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GRANIT Simulation: Runge-Kutta
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4th Order Runge-Kutta Simulation use to solve
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GRANIT Simulation: Initial Populations

Initial state pOpulationS are determined byaAZ =21 um 1.0 LI L L N ) O O O
step at the beginning of the GRANIT set-up.

Considering first 4 levels, a; = a, = az = a4 = 1 before the 0.8 Rt
step. g i a 4 /
. . c 06 ]
Assuming a sharp step, the sudden approximation is used to = i a; ]
find state populations when inside the transition region e _ i
g 04 -—-—-- ay 7]
Before step: 2 N 0 i
After step: = i
Y ~Ai(z — Az — z,) E -

g ¢ .

0.0

/

N\
LT

~7

a,, (after step) = a,,, (after step) = a,,| (after step) A \ / 1
iy -02_||||I|...\|\.‘.‘./TI|-.\‘.k'."|’/ bl ]
_ * 0 5 0 15 20 25 30
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GRANIT Simulation: Results

Initial populations determined by the projection
after the step for each eigen energy, as in previous
slide.

Simulation stopped after propagating through
transition region T = L/v, where
L=16cm

The result is taken to be the ground state
population |a;|* = |a;1|* + |ay,|?

Simulation run for several v in the GRANIT
spectrum and then averaged.

m m
v =4—, oc=15—
S S

Several phases of the AC field are also considered
and averaged over.
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GRANIT 2020 Experiment

~5 days of measurement time in AC Mode
~20 days of beam time.

It was a struggle to operate the source for
longer than a couple days at a time.

1 - 3 + seen clearly, statistically
significant.
(L)3:1-F - :265:2.].
wiheasured — 261.0 + 1.3
but 1 - 3 — not observed. The data is
statistically compatible with no signal.
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Model Gauss
Equation Y=y0 + (A/(WSQI(PI2)) exp(-2* ((x-xCyw|
»2)
95 Reduced Chi-S | 1.50769
. a
Adj.R-Square 055879
T Value Standard Error
9 0 - count rate yo 5.94 0
- count rate 261.16993 157215
J count rate 10 45549 457674
count rate Model GgushsK ‘‘‘‘‘
854 countrate | e o ation Yoy0 + (AW sqri(PU2)) exp(-2-((x-xc)W]
- count rate "2)
’r:T countrate | peguced Chi-S  1.1401
ar
T 8.0 - Adj.R-Square | 0.66636
E - Value Standard Error
~ count rate y0 634074 020062
Q count rate 261.02112 127714
o] —{- 5 _ QN | count rate w 85638 3333
f O | countrate A 1921776 7.16015
—— N [countrate sigma 42819 16665
= | count rate FWHM 10.08311 3.9243
8 704 count rate Height 1.79051 0.38328
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GRANIT Improvements

A significant improvement of UCN flux at the
input would greatly help statistics and make
precisions spectroscopy more feasible.

Improving the reliability of the UCN source
would increase usable time.

Making V(t) more sinusoidal than before could
also prevent some unintentional transitions
induced in high order Fourier terms.

Alonger L or larger field strength could help for
observation of the w,;_ transition

u
-Qnmi = iﬁ%(”lzlnw
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Ground State Population (|:11 |2) vs Transition Region Length (L): f=199.2Hz, v=4m/s, ¢ =0rad
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Conclusions

Gravitational Resonance Spectroscopy is a promising method of probing
new physics models with extreme precision.

UCNSs are ideal particles for GRS due to their long observation times

AE i
At

To reach the full potential of GRS, and of GRANIT, improvements of the
experimental set up and significantly higher flux UCN sources are
needed to improve the statistics, signal to noise ratio, and precision of
spectroscopy.
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People

Many people have contributed to GRANIT, here are some names
from the recent work:

Stefan Baessler, Benoit Clement, Valery Nesvizhevsky, Emily Perry,
Guillaume Pignol, Konstantin Protasov, Dominique Rebreyend,
Damien Roulier, Lingnan Shen, A.V. Strelkov, Francis Vezzu
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Thank you for listening!
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